Search results

Search for "active layer thickness" in Full Text gives 3 result(s) in Beilstein Journal of Nanotechnology.

Nontoxic pyrite iron sulfide nanocrystals as second electron acceptor in PTB7:PC71BM-based organic photovoltaic cells

  • Olivia Amargós-Reyes,
  • José-Luis Maldonado,
  • Omar Martínez-Alvarez,
  • María-Elena Nicho,
  • José Santos-Cruz,
  • Juan Nicasio-Collazo,
  • Irving Caballero-Quintana and
  • Concepción Arenas-Arrocena

Beilstein J. Nanotechnol. 2019, 10, 2238–2250, doi:10.3762/bjnano.10.216

Graphical Abstract
  • were spin-coated onto ITO/PEDOT:PSS at 1900 rpm for 60 s at atmospheric conditions, and then the films were annealed at 80 °C for 15 min (active layer thickness ≈100 nm). A PFN layer (≈5–10 nm) was spin-coated at 6000 rpm on top of the active layer and exposed to thermal annealing for 15 min at 80 °C
  • active layer thickness was measured by AFM (Easyscan2 from Nanosurf) in contact mode employing cantilever tips with the aluminum reflective coating (ContAl-G) from BudgetSensors. The AFM roughness images were acquired in dynamic force mode (using PPP-NCLAu from NanoSensors), because it shows better
PDF
Album
Supp Info
Full Research Paper
Published 14 Nov 2019
Graphical Abstract
  • . Keywords: active layer thickness; gate bias; illumination stress; InGaZnO; photoleakage current; thin-film transistors; Introduction Over the last decade, the amorphous oxide-based semiconductor thin-film transistors (AOS TFTs) have attracted global attention for use in advanced display technologies due
  • applying a large negative VDS bias of VDS < VGS during NBIS [18]. These studies imply that the fabrication parameters for the active layer should be well taken into account to improve the reliability of oxide TFTs. The active layer thickness is a key parameter to modify the performance of a-IGZO TFTs. Some
  • works have highlighted that the electrical properties of the device (for both the initial and after stress conditions) such as threshold voltage, on/off ratio, and field effect mobility, can be effectively adjusted by controlling the active layer thickness [19][20][21][22][23]. Up to now, the impact of
PDF
Album
Full Research Paper
Published 26 Sep 2018

Tandem polymer solar cells: simulation and optimization through a multiscale scheme

  • Fanan Wei,
  • Ligang Yao,
  • Fei Lan,
  • Guangyong Li and
  • Lianqing Liu

Beilstein J. Nanotechnol. 2017, 8, 123–133, doi:10.3762/bjnano.8.13

Graphical Abstract
  • calculated from the tandem device’s J–V curve, constructed from the J–V curves of the two sub-cells (illustrated in Figure 7). With the domain size fixed at 10 nm for both active layers, we acquired the device performance indices with respect to active layer thickness changing from 50 nm to 400 nm with an
  • interval of 10 nm. As demonstrated in Figure 8, Jsc, open circuit voltage (Voc), fill factor (FF) and PCE are obtained for both the two configurations investigated. Considering the independence of photon absorption efficiency on the active layer thickness, the agreement between the Jsc map (as shown in
  • recombination rate, which results in higher Voc and FF. These discussions are in conjunction with the results presented in Figure 8a.2,3 and 8b.2,3. For different weight ratios, the PCE values are all estimated and their dependence on the active layer thickness and domain size are presented in Supporting
PDF
Album
Supp Info
Full Research Paper
Published 12 Jan 2017
Other Beilstein-Institut Open Science Activities